Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Orthop Res ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499500

RESUMEN

Pannexin 3 (Panx3) is a glycoprotein that forms mechanosensitive channels expressed in chondrocytes and annulus fibrosus cells of the intervertebral disc (IVD). Evidence suggests Panx3 plays contrasting roles in traumatic versus aging osteoarthritis (OA) and intervertebral disc degeneration (IDD). However, whether its deletion influences the response of joint tissue to forced use is unknown. The purpose of this study was to determine if Panx3 deletion in mice causes increased knee joint OA and IDD after forced treadmill running. Male and female wildtype (WT) and Panx3 knockout (KO) mice were randomized to either a no-exercise group (sedentary; SED) or daily forced treadmill running (forced exercise; FEX) from 24 to 30 weeks of age. Knee cartilage and IVD histopathology were evaluated by histology, while tibial secondary ossification centers were analyzed using microcomputed tomography (µCT). Both male and female Panx3 KO mice developed larger superficial defects of the tibial cartilage after forced treadmill running compared with SED WT mice. Additionally, Panx3 KO mice developed reduced bone volume, and female PANX3 KO mice had lengthening of the lateral tubercle at the intercondylar eminence. In the lower lumbar spine, both male and female Panx3 KO mice developed histopathological features of IDD after running compared to SED WT mice. These findings suggest that the combination of deleting Panx3 and forced treadmill running induces OA and causes histopathological changes associated with the degeneration of the IVDs in mice.

2.
Osteoarthritis Cartilage ; 32(4): 372-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38199296

RESUMEN

OBJECTIVES: Significant advances have been made in our understanding of osteoarthritis (OA) pathogenesis; however, no disease-modifying therapies have been identified. This review will summarize the gene therapy landscape, its initial successes for OA, and possible challenges using recent studies and examples of gene therapies in clinical trials. DESIGN: This narrative review has three major sections: 1) vector systems for OA gene therapy, 2) current and emerging targets for OA gene therapy, and 3) considerations and future directions. RESULTS: Gene therapy is the strategy by which nucleic acids are delivered to treat and reverse disease progression. Specificity and prolonged expression of these nucleic acids are achieved by manipulating promoters, genes, and vector systems. Certain vector systems also allow for the development of combinatorial nucleic acid strategies that can be delivered in a single intraarticular injection - an approach likely required to treat the complexity of OA pathogenesis. Several viral and non-viral vector-based gene therapies are in clinical trials for OA, and many more are being evaluated in the preclinical arena. CONCLUSIONS: In a post-coronavirus disease 2019 (COVID-19) era, the future of gene therapy for OA is certainly promising; however, the majority of preclinical validation continues to focus heavily on post-traumatic models and changes in only cartilage and subchondral bone. To ensure successful translation, new candidates in the preclinical arena should be examined against all joint tissues as well as pain using diverse models of injury-, obesity-, and age-induced disease. Lastly, consideration must be given to strategies for repeat administration and the cost of treatment owing to the chronic nature of OA.


Asunto(s)
Ácidos Nucleicos , Osteoartritis , Humanos , Osteoartritis/genética , Osteoartritis/terapia , Osteoartritis/metabolismo , Cartílago/metabolismo , Terapia Genética , Dolor/metabolismo , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/uso terapéutico
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161280

RESUMEN

Osteogenesis imperfecta (OI) is a genetic disorder that features wide-ranging defects in both skeletal and nonskeletal tissues. Previously, we and others reported that loss-of-function mutations in FK506 Binding Protein 10 (FKBP10) lead to skeletal deformities in conjunction with joint contractures. However, the pathogenic mechanisms underlying joint dysfunction in OI are poorly understood. In this study, we have generated a mouse model in which Fkbp10 is conditionally deleted in tendons and ligaments. Fkbp10 removal substantially reduced telopeptide lysyl hydroxylation of type I procollagen and collagen cross-linking in tendons. These biochemical alterations resulting from Fkbp10 ablation were associated with a site-specific induction of fibrosis, inflammation, and ectopic chondrogenesis followed by joint deformities in postnatal mice. We found that the ectopic chondrogenesis coincided with enhanced Gli1 expression, indicating dysregulated Hedgehog (Hh) signaling. Importantly, genetic inhibition of the Hh pathway attenuated ectopic chondrogenesis and joint deformities in Fkbp10 mutants. Furthermore, Hh inhibition restored alterations in gait parameters caused by Fkbp10 loss. Taken together, we identified a previously unappreciated role of Fkbp10 in tendons and ligaments and pathogenic mechanisms driving OI joint dysfunction.


Asunto(s)
Condrocitos/patología , Articulaciones/fisiopatología , Actividad Motora , Osteogénesis Imperfecta/fisiopatología , Osteogénesis , Proteínas de Unión a Tacrolimus/metabolismo , Animales , Animales Recién Nacidos , Condrogénesis/genética , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Marcha , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidroxilación , Inflamación/genética , Inflamación/patología , Articulaciones/patología , Ligamentos/patología , Lisina/metabolismo , Ratones , Modelos Biológicos , Osificación Heterotópica/complicaciones , Osificación Heterotópica/genética , Osificación Heterotópica/patología , Osificación Heterotópica/fisiopatología , Osteogénesis/genética , Osteogénesis Imperfecta/complicaciones , Osteogénesis Imperfecta/genética , Osteogénesis Imperfecta/patología , Péptidos/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Proteínas de Unión a Tacrolimus/genética , Tendones/patología
5.
Arthritis Res Ther ; 23(1): 93, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752736

RESUMEN

INTRODUCTION: Obesity is one of the largest modifiable risk factors for the development of musculoskeletal diseases, including intervertebral disc (IVD) degeneration and back pain. Despite the clinical association, no studies have directly assessed whether diet-induced obesity accelerates IVD degeneration, back pain, or investigated the biological mediators underlying this association. In this study, we examine the effects of chronic consumption of a high-fat or high-fat/high-sugar (western) diet on the IVD, knee joint, and pain-associated outcomes. METHODS: Male C57BL/6N mice were randomized into one of three diet groups (chow control; high-fat; high-fat, high-sugar western diet) at 10 weeks of age and remained on the diet for 12, 24, or 40 weeks. At endpoint, animals were assessed for behavioral indicators of pain, joint tissues were collected for histological and molecular analysis, serum was collected to assess for markers of systemic inflammation, and IBA-1, GFAP, and CGRP were measured in spinal cords by immunohistochemistry. RESULTS: Animals fed obesogenic (high-fat or western) diets showed behavioral indicators of pain beginning at 12 weeks and persisting up to 40 weeks of diet consumption. Histological indicators of moderate joint degeneration were detected in the IVD and knee following 40 weeks on the experimental diets. Mice fed the obesogenic diets showed synovitis, increased intradiscal expression of inflammatory cytokines and circulating levels of MCP-1 compared to control. Linear regression modeling demonstrated that age and diet were both significant predictors of most pain-related behavioral outcomes, but not histopathological joint degeneration. Synovitis was associated with alterations in spontaneous activity. CONCLUSION: Diet-induced obesity accelerates IVD degeneration and knee OA in mice; however, pain-related behaviors precede and are independent of histopathological structural damage. These findings contribute to understanding the source of obesity-related back pain and the contribution of structural IVD degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Citocinas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Degeneración del Disco Intervertebral/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad
6.
Am J Sports Med ; 47(5): 1223-1229, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30888847

RESUMEN

BACKGROUND: The benefits of platelet-rich plasma (PRP) are believed to be in part dependent on growth factor release after platelet activation. Platelet activation is complex and involves multiple mechanisms. One important mechanism is driven by cyclooxygenase 1 (COX-1)-mediated conversion of arachidonic acid (AA) to precursor prostaglandins that then mediate proinflammatory responses that trigger growth factor release. Acetylsalicylic acid (ASA; also known as aspirin) is known to irreversibly inhibit COX-1, thereby blocking AA-mediated signaling; however, it is unclear whether ASA use alters growth factor release from freshly isolated PRP. PURPOSE: To assess the effects of low-dose ASA use on activation of growth factor release from freshly isolated human PRP via AA and thrombin (TBN). STUDY DESIGN: Controlled laboratory study. METHODS: Twelve healthy men underwent blood collection and leukocyte-rich PRP (LR-PRP) preparation through a double-spin protocol to obtain baseline whole blood and PRP counts the same day. PRP was aliquoted into 3 groups: nonactivated, AA activated, and TBN activated. Immediately after activation, the concentrations of transforming growth factor ß1 (TGF-ß1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor AB (PDGF-AB) were measured using enzyme-linked immunosorbent assays (ELISAs). The same 12 participants were then placed on an 81-mg daily dose of oral ASA for 14 days. Repeat characterization of whole blood and PRP analyses was done on day 14, followed by repeat ELISAs of growth factors under the same nonactivated and activated settings as previously stated. RESULTS: Fourteen days of daily ASA had no effect on the number of platelets and leukocytes measured in whole blood and LR-PRP. Compared with nonactivated LR-PRP, AA- and TBN-mediated activation led to significant release of VEGF and PDGF-AB. In contrast, release of TGF-ß1 from LR-PRP was observed only with activation by AA, not with TBN. Consistent with its inhibitory role in AA signaling, ASA significantly inhibited AA-mediated release of all 3 growth factors measured in this study. Although ASA had no effect on TBN-mediated release of VEGF and TGF-ß1 from LR-PRP, ASA did partially block TBN-mediated release of PDGF-AB, although the mechanism remains unclear. CONCLUSION: Daily use of low-dose ASA reduces VEGF, PDGF-AB, and TGF-ß1 expression in freshly isolated human LR-PRP when activated with AA. CLINICAL RELEVANCE: Reduction in growth factor release attributed to daily use of low-dose ASA or other COX inhibitors can be mitigated when PRP samples are activated with TBN. Clinical studies are needed to determine whether activation before PRP injection is needed in all applications where ASA is in use and to what extent ASA may inhibit growth factor release in vivo at the site of injury.


Asunto(s)
Aspirina/farmacología , Leucocitos/metabolismo , Plasma Rico en Plaquetas/efectos de los fármacos , Adulto , Plaquetas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Activación Plaquetaria/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estudios Prospectivos , Trombina/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Adulto Joven
7.
Hum Gene Ther ; 30(2): 225-235, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070147

RESUMEN

Osteoarthritis (OA) is a degenerative disease of synovial joints characterized by progressive loss of articular cartilage, subchondral bone remodeling, and intra-articular inflammation with synovitis that results in chronic pain and motor impairment. Despite the economic and health impacts, current medical therapies are targeted at symptomatic relief of OA and fail to alter its progression. Given the complexity of OA pathogenesis, we hypothesized that a combinatorial gene therapy approach, designed to inhibit inflammation with interleukin-1 receptor antagonist (IL-1Ra) while promoting chondroprotection using lubricin (PRG4), would improve preservation of the joint compared to monotherapy alone. Employing two surgical techniques to model mild, moderate and severe posttraumatic OA, we found that combined delivery of helper-dependent adenoviruses (HDVs), expressing IL-1Ra and PRG4, preserved articular cartilage better than either monotherapy in both models as demonstrated by preservation of articular cartilage volume and surface area. This improved protection was associated with increased expression of proanabolic and cartilage matrix genes together with decreased expression of catabolic genes and inflammatory mediators. In addition to improvements in joint tissues, this combinatorial gene therapy prolonged protection against thermal hyperalgesia compared to either monotherapy. Taken together, our results show that a combinatorial strategy is superior to monotherapeutic approaches for treatment of posttraumatic OA.


Asunto(s)
Adenoviridae , Cartílago Articular , Terapia Genética , Hiperalgesia , Proteína Antagonista del Receptor de Interleucina 1 , Osteoartritis , Proteoglicanos , Transducción Genética , Heridas y Lesiones , Animales , Cartílago Articular/metabolismo , Cartílago Articular/patología , Modelos Animales de Enfermedad , Humanos , Hiperalgesia/etiología , Hiperalgesia/metabolismo , Hiperalgesia/patología , Hiperalgesia/terapia , Proteína Antagonista del Receptor de Interleucina 1/biosíntesis , Proteína Antagonista del Receptor de Interleucina 1/genética , Masculino , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/terapia , Proteoglicanos/biosíntesis , Proteoglicanos/genética , Heridas y Lesiones/complicaciones , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
8.
Arthritis Rheumatol ; 70(11): 1757-1768, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044894

RESUMEN

OBJECTIVE: Gene therapy holds great promise for the treatment of osteoarthritis (OA) because a single intraarticular injection can lead to long-term expression of therapeutic proteins within the joint. This study was undertaken to investigate the use of a helper-dependent adenovirus (HDAd)-mediated intraarticular gene therapy approach for long-term expression of interleukin-1 receptor antagonist (IL-1Ra) as sustained symptomatic and disease-modifying therapy for OA. METHODS: In mouse models of OA, efficacy of HDAd-IL-1Ra was evaluated by histologic analysis, micro-computed tomography (micro-CT), and hot plate analysis. In a horse OA model, safety and efficacy of HDAd-IL-1Ra were evaluated by blood chemistry, analyses of synovial fluid, synovial membrane, and cartilage, and gross pathology and lameness assessments. RESULTS: In skeletally immature mice, HDAd-IL-1Ra prevented development of cartilage damage, osteophytes, and synovitis. In skeletally immature and mature mice, treatment with HDAd-interleukin-1 receptor antagonist post-OA induction resulted in improved-albeit not significantly-cartilage status assessed histologically and significantly increased cartilage volume, cartilage surface, and bone surface covered by cartilage as assessed by micro-CT. Fewer osteophytes were observed in HDAd-IL-1Ra-treated skeletally immature mice. Synovitis was not affected in skeletally immature or mature mice. HDAd-IL-1Ra protected against disease-induced thermal hyperalgesia in skeletally mature mice. In the horse OA model, HDAd-IL-1Ra therapy significantly improved lameness parameters, indicating efficient symptomatic treatment. Moreover, macroscopically and histologically assessed cartilage and synovial membrane parameters were significantly improved, suggesting disease-modifying efficacy. CONCLUSION: These data from OA models in small and large animals demonstrated safe symptomatic and disease-modifying treatment with an HDAd-expressing IL-1Ra. Furthermore, this study establishes HDAd as a vector for joint gene therapy.


Asunto(s)
Artritis Experimental/terapia , Cartílago Articular/patología , Terapia Genética/métodos , Proteína Antagonista del Receptor de Interleucina 1/genética , Osteoartritis/terapia , Osteofito/patología , Rodilla de Cuadrúpedos/patología , Sinovitis/patología , Adenoviridae , Animales , Articulaciones del Carpo/diagnóstico por imagen , Articulaciones del Carpo/metabolismo , Articulaciones del Carpo/patología , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/metabolismo , Modelos Animales de Enfermedad , Miembro Anterior , Caballos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Ligamentos Articulares/cirugía , Ratones , Osteoartritis/metabolismo , Osteofito/diagnóstico por imagen , Osteofito/metabolismo , Rodilla de Cuadrúpedos/diagnóstico por imagen , Rodilla de Cuadrúpedos/metabolismo , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Sinovitis/diagnóstico por imagen , Sinovitis/metabolismo , Microtomografía por Rayos X
9.
Curr Opin Pharmacol ; 40: 59-66, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29621661

RESUMEN

Gene therapy refers to the use of viral and non-viral vectors to deliver nucleic acids to tissues of interest using direct (in vivo) or transduced cell-mediated (ex vivo) approaches. Over the past few decades, strategies have been adopted to express therapeutic transgenes at sites of injury to promote or facilitate repair of bone and cartilage. Targets of interest have typically included secreted proteins such as growth factors and anti-inflammatory mediators; however, work has also begun to focus intracellularly on signaling components, transcription factors and small, regulatory nucleic acids such as microRNAs (miRNAs). In recent years, a number of single therapeutic gene approaches (termed 'monotherapies') have proven effective in preclinical models of disease, and several are being evaluated in clinical trials. In particular, an ex vivo TGF-ß1 gene therapy was approved in Korea in 2017 for treatment of moderate-to-severe osteoarthritis (OA). The ability to utilize viral vectors for context-specific and combinatorial gene therapy is also being investigated, and these strategies are likely to be important in more robustly addressing the complexities of tissue repair and regeneration in skeletal disease. In this review, we provide an overview of viral gene therapies being developed for treatment of bone and cartilage pathologies, with an emphasis on emerging combinatorial strategies as well as those targeting intracellular mediators such as miRNAs.


Asunto(s)
Enfermedades Óseas/terapia , Remodelación Ósea/genética , Huesos/fisiopatología , Enfermedades de los Cartílagos/terapia , Cartílago/fisiopatología , Condrogénesis/genética , Terapia Genética/métodos , MicroARNs/genética , Regeneración/genética , Animales , Enfermedades Óseas/genética , Enfermedades Óseas/patología , Enfermedades Óseas/fisiopatología , Huesos/metabolismo , Huesos/patología , Cartílago/metabolismo , Cartílago/patología , Enfermedades de los Cartílagos/genética , Enfermedades de los Cartílagos/patología , Enfermedades de los Cartílagos/fisiopatología , Técnicas de Transferencia de Gen , Vectores Genéticos , Humanos
10.
Front Physiol ; 7: 294, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27468270

RESUMEN

Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca(2+)]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca(2+)]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K 1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP.

11.
Purinergic Signal ; 12(3): 509-20, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27206526

RESUMEN

The P2X7 and Wnt/ß-catenin signaling pathways regulate osteoblast differentiation and are critical for the anabolic responses of bone to mechanical loading. However, whether these pathways interact to control osteoblast activity is unknown. The purpose of this study was to investigate the effects of P2X7 activation on Wnt/ß-catenin signaling in osteoblasts. Using MC3T3-E1 cells, we found that combined treatment with Wnt3a and the P2X7 agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate (BzATP) elicited more sustained ß-catenin nuclear localization than that induced by Wnt3a alone. Wnt3a-induced increases in ß-catenin transcriptional activity were also potentiated by treatment with BzATP. Consistent with involvement of P2X7, a high ATP concentration (1 mM) potentiated Wnt3a-induced ß-catenin transcriptional activity, whereas a low concentration (10 µM) of ATP, adenosine 5'-diphosphate (ADP), or uridine 5'-triphosphate (UTP) failed to elicit a response. The potentiation of ß-catenin transcriptional activity elicited by BzATP was also inhibited by two distinct P2X7 antagonists: A 438079 and A 740003. Furthermore, responses to Wnt3a in calvarial cells isolated from P2rx7 knockout mice were significantly less than in cells from wild-type controls. In MC3T3-E1 cells, BzATP increased inhibitory phosphorylation of glycogen synthase kinase 3ß (GSK3ß), a process that was blocked by A 438079 and diminished by inhibition of protein kinase C. Thus, P2X7 signaling may potentiate the canonical Wnt pathway through GSK3ß inhibition. Taken together, we show that P2X7 activation prolongs and potentiates Wnt/ß-catenin signaling. Consequently, cross-talk between P2X7 and Wnt/ß-catenin pathways may modulate osteoblast activity in response to mechanical loading.


Asunto(s)
Osteoblastos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Noqueados
12.
Dent Mater ; 32(6): 817-26, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27059772

RESUMEN

OBJECTIVES: Flowable dental composites are used as restorative materials due to their excellent esthetics and rheology. However, they suffer from inferior mechanical properties compared to conventional composites. The aim of this study was to reinforce a flowable dental composite with TiO2 nanotubes (n-TiO2) and to assess the effect of n-TiO2 surface modifications on the mechanical properties of the reinforced composite. METHODS: n-TiO2 were synthesized using an alkaline hydrothermal process and then functionalized with silane or methacrylic acid (MA). Nanotubes were characterized by scanning and transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy. Commercially available flowable composite (Filtek™ Supreme Ultra Flowable Restorative, 3M ESPE) was reinforced with varying amounts of nanotubes (0-5wt%). Flowability of the resulting composites was evaluated using a Gillmore needle method. Dynamic Young's modulus (E) was measured using an ultrasonic technique. Fracture toughness (KIc) was assessed using a notchless triangular prism and radiopacity was quantified. Viability of NIH/3T3 fibroblasts was evaluated following incubation on composite specimens for 24h. RESULTS: Electron microscopy revealed a tubular morphology of n-TiO2. All reinforced composites exhibited significantly greater values of E than unreinforced composite. Composites reinforced with 3wt% n-TiO2 functionalized with MA exhibited the greatest values of E and KIc. Cytotoxicity assays revealed that reinforced composites were biocompatible. Taken together, flowable composites reinforced with n-TiO2 exhibited mechanical properties superior to those of unreinforced composite, with minimal effects on flowability and radiopacity. SIGNIFICANCE: n-TiO2-reinforced flowable composites are promising materials for use in dental restorations.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Nanotubos , Titanio , Ensayo de Materiales
13.
Purinergic Signal ; 10(2): 291-304, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24222214

RESUMEN

The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types. We have shown previously that disruption of P2X7 receptor function results in downregulation of osteogenic markers and upregulation of adipogenic markers in calvarial cell cultures. In the present study, we assessed whether loss of P2X7 receptor function results in changes to adipocyte distribution and lipid accumulation in vivo. Male P2X7 loss-of-function (KO) mice exhibited significantly greater body weight and epididymal fat pad mass than wild-type (WT) mice at 9 months of age. Fat pad adipocytes did not differ in size, consistent with adipocyte hyperplasia rather than hypertrophy. Histological examination revealed ectopic lipid accumulation in the form of adipocytes and/or lipid droplets in several non-adipose tissues of older male KO mice (9-12 months of age). Ectopic lipid was observed in kidney, extraorbital lacrimal gland and pancreas, but not in liver, heart or skeletal muscle. Specifically, lacrimal gland and pancreas from 12-month-old male KO mice had greater numbers of adipocytes in perivascular, periductal and acinar regions. As well, lipid droplets accumulated in the renal tubular epithelium and lacrimal acinar cells. Blood plasma analyses revealed diminished total cholesterol levels in 9- and 12-month-old male KO mice compared with WT controls. Interestingly, no differences were observed in female mice. Moreover, there were no significant differences in food consumption between male KO and WT mice. Taken together, these data establish novel in vivo roles for the P2X7 receptor in regulating adipogenesis and lipid metabolism in an age- and sex-dependent manner.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis/fisiología , Adiposidad/fisiología , Metabolismo de los Lípidos/fisiología , Receptores Purinérgicos P2X7/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Receptores Purinérgicos P2X7/genética , Microtomografía por Rayos X
14.
J Cell Sci ; 126(Pt 16): 3615-26, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23750003

RESUMEN

The primordial intercellular signaling molecule ATP acts through two families of cell-surface P2 receptors - the P2Y family of G-protein-coupled receptors and the P2X family of ligand-gated cation channels. Multiple P2 receptors are expressed in a variety of cell types. However, the significance of these networks of receptors in any biological system remains unknown. Using osteoblasts as a model system, we found that a low concentration of ATP (10 µM, ATPlow) induced transient elevation of cytosolic Ca(2+), whereas a high concentration of ATP (1 mM, ATPhigh) elicited more sustained elevation. Moreover, graded increases in the Ca(2+) signal were achieved over a remarkable million-fold range of ATP concentrations (1 nM to 1 mM). Next, we demonstrated that ATPlow caused transient nuclear localization of the Ca(2+)-regulated transcription factor NFATc1; whereas, ATPhigh elicited more sustained localization. When stimulated with ATPhigh, osteoblasts from P2X7 loss-of-function mice showed only transient Ca(2+)-NFATc1 signaling; in contrast, sustained signaling was observed in wild-type cells. Additional experiments revealed a role for P2Y receptors in mediating transient signaling induced by low ATP concentrations. Thus, distinct P2 receptors with varying affinities for ATP account for this wide range of sensitivity to extracellular nucleotides. Finally, ATPhigh, but not ATPlow, was shown to elicit robust expression of the NFAT target gene Ptgs2 (encoding COX-2), consistent with a crucial role for the duration of Ca(2+)-NFAT signaling in regulating target gene expression. Taken together, ensembles of P2 receptors provide a mechanism by which cells sense ATP over a wide concentration range and transduce this input into distinct cellular signals.


Asunto(s)
Adenosina Trifosfato/metabolismo , Células 3T3 , Adenosina Trifosfato/farmacología , Animales , Señalización del Calcio , Núcleo Celular/metabolismo , Células Cultivadas , Ratones , Ratones Noqueados , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Transcripción Genética
15.
Purinergic Signal ; 9(4): 687-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23689980

RESUMEN

The effect of the relatively potent P2X7 receptor agonist 2'(3')-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate triethylammonium salt (BzATP-TEA) on cytosolic pH (pHi) was studied using MC3T3-E1 osteoblast-like cells, which endogenously express P2X7 receptors. pHi was measured fluorimetrically using the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. BzATP-TEA (0.3-1.5 mM) elicited fast-onset alkalinization responses. In contrast, adenosine 5'-triphosphate disodium salt (5 mM) failed to reproduce the BzATP-TEA-induced responses, indicating a P2 receptor-independent mechanism. We speculated that triethylamine, which is present in solutions of BzATP-TEA, permeates the plasma membrane, and is protonated intracellularly, leading to an increase in pHi. Consistent with this hypothesis, triethylammonium (TEA) chloride mimicked the effects of BzATP-TEA on pHi. Moreover, measurements using a Cytosensor microphysiometer revealed that TEA chloride transiently suppressed proton efflux from cells, whereas washout of TEA transiently enhanced proton efflux. BzATP-TEA also elicited a sustained increase in proton efflux that was blocked specifically by the P2X7 antagonist A-438079. Taken together, we conclude that BzATP-TEA-induced alkalinization is unrelated to P2X7 activation, but is due to the presence of TEA. This effect may confound assessment of the outcomes of P2X7 activation by BzATP-TEA in other systems. Thus, control experiments using TEA chloride are recommended to distinguish between receptor-mediated and nonspecific effects of this widely used agonist. We performed such a control and confirmed that BzATP-TEA, but not TEA chloride, caused the elevation of cytosolic free Ca(2+) in MC3T3-E1 cells, ruling out the possibility that receptor-independent effects on pHi underlie BzATP-TEA-induced Ca(2+) signaling.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Citosol/química , Citosol/metabolismo , Compuestos de Amonio Cuaternario/farmacología , Receptores Purinérgicos P2X7/metabolismo , Células 3T3 , Adenosina Trifosfato/farmacología , Animales , Ratones , Protones , Agonistas del Receptor Purinérgico P2X/farmacología
16.
Am J Physiol Endocrinol Metab ; 302(5): E561-75, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22185840

RESUMEN

The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types, including osteoblasts. Genetically modified mice with loss of P2X7 function exhibit altered bone formation. Moreover, activation of P2X7 in vitro stimulates osteoblast differentiation and matrix mineralization, although the underlying mechanisms remain unclear. Because osteogenesis is associated with enhanced cellular metabolism, our goal was to characterize the effects of nucleotides on metabolic acid production (proton efflux) by osteoblasts. The P2X7 agonist 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP; 300 µM) induced dynamic membrane blebbing in MC3T3-E1 osteoblast-like cells (consistent with activation of P2X7 receptors) but did not induce cell death. Using a Cytosensor microphysiometer, we found that 9-min exposure to BzATP (300 µM) caused a dramatic increase in proton efflux from MC3T3-E1 cells (∼2-fold), which was sustained for at least 1 h. In contrast, ATP or UTP (100 µM), which activate P2 receptors other than P2X7, failed to elicit a sustained increase in proton efflux. Specific P2X7 receptor antagonists A 438079 and A 740003 inhibited the sustained phase of the BzATP-induced response. Extracellular Ca²âº was required during P2X7 receptor stimulation for initiation of sustained proton efflux, and removal of extracellular glucose within the sustained phase abolished the elevation elicited by BzATP. In addition, inhibition of phosphatidylinositol 3-kinase blocked the maintenance but not initiation of the sustained phase. Taken together, we conclude that brief activation of P2X7 receptors on osteoblast-like cells triggers a dramatic, Ca²âº-dependent stimulation of metabolic acid production. This increase in proton efflux is sustained and dependent on glucose and phosphatidylinositol 3-kinase activity.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Agonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Remodelación Ósea/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Clonales , Inhibidores Enzimáticos/farmacología , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Ácido Láctico/metabolismo , Ligandos , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Agonistas del Receptor Purinérgico P2X/química , Agonistas del Receptor Purinérgico P2X/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/química , Uridina Trifosfato/metabolismo
17.
J Funct Biomater ; 3(1): 209-24, 2012 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-24956525

RESUMEN

Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1-100 Hz) mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers), attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

18.
Purinergic Signal ; 5(2): 205-21, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19224395

RESUMEN

Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...